
Takim Andriono - 3 April 2021

Pemikiran Komputasional dan
Kecakapan Hidup Sehari-hari

1

Kecakapan Hidup
(Life Skills)

2

3

4

Pasal 26 Ayat (3)
Pendidikan kecakapan hidup (life skills) adalah pendidikan yang memberikan
1. kecakapan personal, 2. kecakapan sosial, 3. kecakapan intelektual, dan
4. kecakapan vokasional untuk bekerja atau usaha mandiri.

PENJELASAN
ATAS UNDANG-UNDANG REPUBLIK INDONESIA NOMOR 20 TAHUN 2003
TENTANG SISTEM PENDIDIKAN NASIONAL

GLS: Generic Life Skills SLS: Specific Life Skills

5

1. Kecakapan Personal
• Kecakapan Kesadaran Diri

• Kecakapan Berpikir Rational

2. Kecakapan Sosial
• Kecakapan Berkomunikasi

• Kecakapan Bekerjasama

3. Kecakapan Intelektual (Akademik)

• Kecakapan Berpikir ilmiah

4. Kecakapan Vokasional
• Kecakapan vokasional dasar

• Kecakapan vokasional khusus

Kecakapan Hidup (Life Skills)

6

1. Kecakapan Personal
• Kecakapan Kesadaran Diri

• Kecakapan Berpikir Rational

2. Kecakapan Sosial
• Kecakapan Berkomunikasi

• Kecakapan Bekerjasama

3. Kecakapan Intelektual (Akademik)

• Kecakapan Berpikir ilmiah

4. Kecakapan Vokasional
• Kecakapan vokasional dasar

• Kecakapan vokasional khusus

Kecakapan Hidup (Life Skills)

7

PEMIKIRAN KOMPUTASIONAL

Pemikiran Komputasional
(Computational Thinking)

8

9

Merupakan sikap dan keterampilan terapan yang setiap orang, bukan hanya

Pakar Komputer Sains, ingin belajar dan gunakan.

(Jeannette Wing, 2006)

https://circlcenter.org/assessing-computational-thinking/

10

Pemikiran Komputasional adalah sebuah cara manusia memecahkan
berbagai masalah; bukan upaya membuat manusia berpikir seperti
komputer (Jeannette Wing, 2016)
https://www.researchgate.net/publication/274309848_Computational_Thinking

Sederhana, Sistematis, Efektif, dan Efesien*

*) Shute, et.al (2017), Demystifying computational thinking

11

https://ancientegyptianfacts.com/
ancient-egyptian-scribes.html

Kini kita Hidup di Era Pengetahuan

Jangan Ciptakan Elit “Baru” Masyarakat

Era Agraris

Kemampuan Baca-Tulis Hanya Dikuasai
Para Pemuka Agama & Juru Tulis Kerajaan

12

https://www.innovativeteachingideas.com/blog/five-reasons-why-computational-thinking-is-an-essential-tool-for-teachers-and-students

5 ALASAN MENGAPA PEMIKIRAN KOMPUTASIONAL POPULER DI SELURUH DUNIA

1. Para pemikir komputasional adalah para pemecah masalah (problem solver)

2. Para pemikir komputasional adalah para inovator

3. Pemikiran komputasional berbasis riset dan teruji

4. Para pemikir komputasional membuat lompatan dari pengguna (consumer) ke pencipta (creator)

5. Pemikiran komputasional mudah diajarkan dan menyenangkan untuk dipelajari

https://www.innovativeteachingideas.com/blog/five-reasons-why-computational-thinking-is-an-essential-tool-for-teachers-and-students

13

LE
AR

N
IN

G
 T

O
 K

N
O

W

LE
AR

N
IN

G
 T

O
 D

O

LE
AR

N
IN

G
 T

O
 L

IV
E

TO
G

ET
H

ER

LE
AR

N
IN

G
 T

O
 B

E

https://steemit.com/steemiteducation/@mayann/what-are-the-four-pillars-of-learning

Kemendikbud, 2019UNESCO

PEMIKIRAN KOMPUTASIONAL

Masalah
Kehidupan

Nyata

Seringkali
menjadi
sekedar
hafalan

Decomposition Pattern Recognition Abstraction Algorithm

FACILITATIVE TIPS
There are a variety of ways that students can practice and hone their computational thinking, well before they try
computer programming.

Integrate computational thinking into other subjects to make it concrete and relevant for students. Find the ways
your classroom already practices computational thinking and call it out!

You may naturally find opportunities to explicitly highlight CT elements during activities like:
• Multi-part project assignments (decomposition).
• Recurring sequences, like routines within a school day: circle times, food breaks, small group work, individual

reflections (pattern recognition).
• Document analysis to develop a synopsis or summary (abstraction).
• Daily practices, such as classroom procedures to line up or exit the classroom (algorithms).

Focus on one CT element at a time. Finding opportunities to practice each individual element may be easier than
developing activities with a combination of skills.

When possible, long-term projects give learners a chance to use all four computational elements. The order of the
CT elements will vary depending on the project; however, many projects follow a similar process:
• Break the task into smaller pieces (decomposition)
• Recognize prior knowledge that they can apply to the task (pattern recognition)
• Sift through to find the relevant details (abstraction)
• Create a timeline and plan for execution (algorithms)

Bridge the connections to computer science by using a combination of “plugged” and “unplugged” activities. While
computational thinking is necessary for computer programming, applying these elements doesn’t need to happen
on a computer. This varied approach reinforces student confidence with these skills, better preparing them to write
a computer program in the future.

COMPUTATIONAL THINKING

Real-world Examples:

TECH TIP: Computational Thinking

Page 2 of 4

https://www.thetech.org/sites/default/files/techtip_computationalthinking_v3.pdf

14

DEKOMPOSISI PENGENALAN POLA ABSTRAKSI ALGORITMA

4 (empat) Komponen Utama dalam Pemikiran Komputasional

15

Decomposition Pattern Recognition Abstraction Algorithm

FACILITATIVE TIPS
There are a variety of ways that students can practice and hone their computational thinking, well before they try
computer programming.

Integrate computational thinking into other subjects to make it concrete and relevant for students. Find the ways
your classroom already practices computational thinking and call it out!

You may naturally find opportunities to explicitly highlight CT elements during activities like:
• Multi-part project assignments (decomposition).
• Recurring sequences, like routines within a school day: circle times, food breaks, small group work, individual

reflections (pattern recognition).
• Document analysis to develop a synopsis or summary (abstraction).
• Daily practices, such as classroom procedures to line up or exit the classroom (algorithms).

Focus on one CT element at a time. Finding opportunities to practice each individual element may be easier than
developing activities with a combination of skills.

When possible, long-term projects give learners a chance to use all four computational elements. The order of the
CT elements will vary depending on the project; however, many projects follow a similar process:
• Break the task into smaller pieces (decomposition)
• Recognize prior knowledge that they can apply to the task (pattern recognition)
• Sift through to find the relevant details (abstraction)
• Create a timeline and plan for execution (algorithms)

Bridge the connections to computer science by using a combination of “plugged” and “unplugged” activities. While
computational thinking is necessary for computer programming, applying these elements doesn’t need to happen
on a computer. This varied approach reinforces student confidence with these skills, better preparing them to write
a computer program in the future.

COMPUTATIONAL THINKING

Real-world Examples:

TECH TIP: Computational Thinking

Page 2 of 4

DEKOMPOSISI

• Mengurai sebuah masalah yang kompleks menjadi
beberapa bagian masalah yang lebih kecil sehingga
menjadi lebih mudah diselesaikan

Contoh dalam kehidupan sesehari

• Rincian tugas, misal: membereskan kamar yang berantakan

• Rincian kegiatan, misal: membangun rumah, menggosok gigi, …

• Bagian-bagian dari tubuh manusia

• Komponen-komponen sebuah pesawat terbang

16

BELAJAR MENGGAMBAR SAPI

http://serbaserbiagung.blogspot.com/2015/08/6-langkah-mudah-menggambar-hewan.html

17

PENGENALAN POLA

Decomposition Pattern Recognition Abstraction Algorithm

FACILITATIVE TIPS
There are a variety of ways that students can practice and hone their computational thinking, well before they try
computer programming.

Integrate computational thinking into other subjects to make it concrete and relevant for students. Find the ways
your classroom already practices computational thinking and call it out!

You may naturally find opportunities to explicitly highlight CT elements during activities like:
• Multi-part project assignments (decomposition).
• Recurring sequences, like routines within a school day: circle times, food breaks, small group work, individual

reflections (pattern recognition).
• Document analysis to develop a synopsis or summary (abstraction).
• Daily practices, such as classroom procedures to line up or exit the classroom (algorithms).

Focus on one CT element at a time. Finding opportunities to practice each individual element may be easier than
developing activities with a combination of skills.

When possible, long-term projects give learners a chance to use all four computational elements. The order of the
CT elements will vary depending on the project; however, many projects follow a similar process:
• Break the task into smaller pieces (decomposition)
• Recognize prior knowledge that they can apply to the task (pattern recognition)
• Sift through to find the relevant details (abstraction)
• Create a timeline and plan for execution (algorithms)

Bridge the connections to computer science by using a combination of “plugged” and “unplugged” activities. While
computational thinking is necessary for computer programming, applying these elements doesn’t need to happen
on a computer. This varied approach reinforces student confidence with these skills, better preparing them to write
a computer program in the future.

COMPUTATIONAL THINKING

Real-world Examples:

TECH TIP: Computational Thinking

Page 2 of 4

proses untuk mengenali pola pola yang terdapat didalam
suatu masalah.

Contoh dalam kehidupan sesehari

• Pemindaian Wajah (face recognition)

• Pemindaian Sidik Jari (finger print recognition)

• Pola permainan dalam olahraga

• Pola dalam sebuah karya seni (batik, dll)

• Pola cuaca, pola curah hujan, …

• Pola dalam urutan bilangan: 1, 4, 9, 16, …

18

Tonton: https://www.youtube.com/watch?v=lVQoMw1a1c4

https://www.youtube.com/watch?v=lVQoMw1a1c4

19

ABSTRAKSI

Decomposition Pattern Recognition Abstraction Algorithm

FACILITATIVE TIPS
There are a variety of ways that students can practice and hone their computational thinking, well before they try
computer programming.

Integrate computational thinking into other subjects to make it concrete and relevant for students. Find the ways
your classroom already practices computational thinking and call it out!

You may naturally find opportunities to explicitly highlight CT elements during activities like:
• Multi-part project assignments (decomposition).
• Recurring sequences, like routines within a school day: circle times, food breaks, small group work, individual

reflections (pattern recognition).
• Document analysis to develop a synopsis or summary (abstraction).
• Daily practices, such as classroom procedures to line up or exit the classroom (algorithms).

Focus on one CT element at a time. Finding opportunities to practice each individual element may be easier than
developing activities with a combination of skills.

When possible, long-term projects give learners a chance to use all four computational elements. The order of the
CT elements will vary depending on the project; however, many projects follow a similar process:
• Break the task into smaller pieces (decomposition)
• Recognize prior knowledge that they can apply to the task (pattern recognition)
• Sift through to find the relevant details (abstraction)
• Create a timeline and plan for execution (algorithms)

Bridge the connections to computer science by using a combination of “plugged” and “unplugged” activities. While
computational thinking is necessary for computer programming, applying these elements doesn’t need to happen
on a computer. This varied approach reinforces student confidence with these skills, better preparing them to write
a computer program in the future.

COMPUTATIONAL THINKING

Real-world Examples:

TECH TIP: Computational Thinking

Page 2 of 4

Proses representasi data dan program dalam bentuk sama
dengan pengertiannya (semantik), dengan “menyembunyikan”
rincian / detail implementasi.

Berfokus pada informasi yang relevan dan penting, melibatkan
tindakan memisahkan informasi inti dari detail-detail tambahan

Contoh dalam kehidupan sesehari

• Peta yang hanya menunjukkan informasi penting

• Ringkasan sebuah karya tulis

• Rencana Pelaksanaan Pembelajaran (RPP) satu lembar

• Membuat model untuk sebuah rancang bangun yang kompleks

20

https://www.csiamerica.com/products/etabs/features/modeling

Setiap komponen struktur
mengandung informasi
(Karakteristik bahan,
ragam dan besaran beban)

21

Decomposition Pattern Recognition Abstraction Algorithm

FACILITATIVE TIPS
There are a variety of ways that students can practice and hone their computational thinking, well before they try
computer programming.

Integrate computational thinking into other subjects to make it concrete and relevant for students. Find the ways
your classroom already practices computational thinking and call it out!

You may naturally find opportunities to explicitly highlight CT elements during activities like:
• Multi-part project assignments (decomposition).
• Recurring sequences, like routines within a school day: circle times, food breaks, small group work, individual

reflections (pattern recognition).
• Document analysis to develop a synopsis or summary (abstraction).
• Daily practices, such as classroom procedures to line up or exit the classroom (algorithms).

Focus on one CT element at a time. Finding opportunities to practice each individual element may be easier than
developing activities with a combination of skills.

When possible, long-term projects give learners a chance to use all four computational elements. The order of the
CT elements will vary depending on the project; however, many projects follow a similar process:
• Break the task into smaller pieces (decomposition)
• Recognize prior knowledge that they can apply to the task (pattern recognition)
• Sift through to find the relevant details (abstraction)
• Create a timeline and plan for execution (algorithms)

Bridge the connections to computer science by using a combination of “plugged” and “unplugged” activities. While
computational thinking is necessary for computer programming, applying these elements doesn’t need to happen
on a computer. This varied approach reinforces student confidence with these skills, better preparing them to write
a computer program in the future.

COMPUTATIONAL THINKING

Real-world Examples:

TECH TIP: Computational Thinking

Page 2 of 4

ALGORITMA
Urutan langkah logis yang digunakan untuk memecahkan
suatu masalah

Contoh dalam kehidupan sesehari

• Resep masakan/ minuman
• Instruksi memasang perabot
• Aturan main sebuah cabang olahraga
• Manual telepon genggam

• Langkah-langkah anak menyiapkan diri secara
mandiri untuk berangkat ke sekolah, belajar dll

22

23

https://www.bbc.co.uk/
bitesize/guides/zqqfyrd/
revision/1

COMPUTATIONAL THINKING

ABSTRAKSI

ALGORITMAPENGENALAN
POLA

DEKOMPOSISI

24

Jumlahkan semua bilangan antara 1 sampai dengan 200

Decomposition Pattern Recognition Abstraction Algorithm

FACILITATIVE TIPS
There are a variety of ways that students can practice and hone their computational thinking, well before they try
computer programming.

Integrate computational thinking into other subjects to make it concrete and relevant for students. Find the ways
your classroom already practices computational thinking and call it out!

You may naturally find opportunities to explicitly highlight CT elements during activities like:
• Multi-part project assignments (decomposition).
• Recurring sequences, like routines within a school day: circle times, food breaks, small group work, individual

reflections (pattern recognition).
• Document analysis to develop a synopsis or summary (abstraction).
• Daily practices, such as classroom procedures to line up or exit the classroom (algorithms).

Focus on one CT element at a time. Finding opportunities to practice each individual element may be easier than
developing activities with a combination of skills.

When possible, long-term projects give learners a chance to use all four computational elements. The order of the
CT elements will vary depending on the project; however, many projects follow a similar process:
• Break the task into smaller pieces (decomposition)
• Recognize prior knowledge that they can apply to the task (pattern recognition)
• Sift through to find the relevant details (abstraction)
• Create a timeline and plan for execution (algorithms)

Bridge the connections to computer science by using a combination of “plugged” and “unplugged” activities. While
computational thinking is necessary for computer programming, applying these elements doesn’t need to happen
on a computer. This varied approach reinforces student confidence with these skills, better preparing them to write
a computer program in the future.

COMPUTATIONAL THINKING

Real-world Examples:

TECH TIP: Computational Thinking

Page 2 of 4

Buat model penjumlahan 1-10 (lebih sederhana)

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 = …

Buat alternatif model penjumlahan
1 + 10 = 11
2 + 9 = 11
3 + 8 = 11
4 + 7 = 11
5 + 6 = 11

3 7 11 15 19+ + + +
10 26 19+ +

36 19+

25

Jumlahkan semua bilangan antara 1 sampai dengan 200

Decomposition Pattern Recognition Abstraction Algorithm

FACILITATIVE TIPS
There are a variety of ways that students can practice and hone their computational thinking, well before they try
computer programming.

Integrate computational thinking into other subjects to make it concrete and relevant for students. Find the ways
your classroom already practices computational thinking and call it out!

You may naturally find opportunities to explicitly highlight CT elements during activities like:
• Multi-part project assignments (decomposition).
• Recurring sequences, like routines within a school day: circle times, food breaks, small group work, individual

reflections (pattern recognition).
• Document analysis to develop a synopsis or summary (abstraction).
• Daily practices, such as classroom procedures to line up or exit the classroom (algorithms).

Focus on one CT element at a time. Finding opportunities to practice each individual element may be easier than
developing activities with a combination of skills.

When possible, long-term projects give learners a chance to use all four computational elements. The order of the
CT elements will vary depending on the project; however, many projects follow a similar process:
• Break the task into smaller pieces (decomposition)
• Recognize prior knowledge that they can apply to the task (pattern recognition)
• Sift through to find the relevant details (abstraction)
• Create a timeline and plan for execution (algorithms)

Bridge the connections to computer science by using a combination of “plugged” and “unplugged” activities. While
computational thinking is necessary for computer programming, applying these elements doesn’t need to happen
on a computer. This varied approach reinforces student confidence with these skills, better preparing them to write
a computer program in the future.

COMPUTATIONAL THINKING

Real-world Examples:

TECH TIP: Computational Thinking

Page 2 of 4

1 + 10 = 11
2 + 9 = 11
3 + 8 = 11
4 + 7 = 11
5 + 6 = 11

1 + 200 = 201
2 + 199 = 201
3 + 198 = 201
…

200 / 2 = 100 pasang

5 x 11

26

Jumlahkan semua bilangan antara 1 sampai dengan 200

Decomposition Pattern Recognition Abstraction Algorithm

FACILITATIVE TIPS
There are a variety of ways that students can practice and hone their computational thinking, well before they try
computer programming.

Integrate computational thinking into other subjects to make it concrete and relevant for students. Find the ways
your classroom already practices computational thinking and call it out!

You may naturally find opportunities to explicitly highlight CT elements during activities like:
• Multi-part project assignments (decomposition).
• Recurring sequences, like routines within a school day: circle times, food breaks, small group work, individual

reflections (pattern recognition).
• Document analysis to develop a synopsis or summary (abstraction).
• Daily practices, such as classroom procedures to line up or exit the classroom (algorithms).

Focus on one CT element at a time. Finding opportunities to practice each individual element may be easier than
developing activities with a combination of skills.

When possible, long-term projects give learners a chance to use all four computational elements. The order of the
CT elements will vary depending on the project; however, many projects follow a similar process:
• Break the task into smaller pieces (decomposition)
• Recognize prior knowledge that they can apply to the task (pattern recognition)
• Sift through to find the relevant details (abstraction)
• Create a timeline and plan for execution (algorithms)

Bridge the connections to computer science by using a combination of “plugged” and “unplugged” activities. While
computational thinking is necessary for computer programming, applying these elements doesn’t need to happen
on a computer. This varied approach reinforces student confidence with these skills, better preparing them to write
a computer program in the future.

COMPUTATIONAL THINKING

Real-world Examples:

TECH TIP: Computational Thinking

Page 2 of 4

1 + 200 = 201
2 + 199 = 201
3 + 198 = 201
…

200 / 2 = 100 pasang

(200 + 1) x (200/2) = 20.100

(x + 1) x (x/2) = …

27

Jumlahkan semua bilangan antara 1 sampai dengan 200

Decomposition Pattern Recognition Abstraction Algorithm

FACILITATIVE TIPS
There are a variety of ways that students can practice and hone their computational thinking, well before they try
computer programming.

Integrate computational thinking into other subjects to make it concrete and relevant for students. Find the ways
your classroom already practices computational thinking and call it out!

You may naturally find opportunities to explicitly highlight CT elements during activities like:
• Multi-part project assignments (decomposition).
• Recurring sequences, like routines within a school day: circle times, food breaks, small group work, individual

reflections (pattern recognition).
• Document analysis to develop a synopsis or summary (abstraction).
• Daily practices, such as classroom procedures to line up or exit the classroom (algorithms).

Focus on one CT element at a time. Finding opportunities to practice each individual element may be easier than
developing activities with a combination of skills.

When possible, long-term projects give learners a chance to use all four computational elements. The order of the
CT elements will vary depending on the project; however, many projects follow a similar process:
• Break the task into smaller pieces (decomposition)
• Recognize prior knowledge that they can apply to the task (pattern recognition)
• Sift through to find the relevant details (abstraction)
• Create a timeline and plan for execution (algorithms)

Bridge the connections to computer science by using a combination of “plugged” and “unplugged” activities. While
computational thinking is necessary for computer programming, applying these elements doesn’t need to happen
on a computer. This varied approach reinforces student confidence with these skills, better preparing them to write
a computer program in the future.

COMPUTATIONAL THINKING

Real-world Examples:

TECH TIP: Computational Thinking

Page 2 of 4

(200 + 1) x (200/2) = 20.100

20.100 (x + 1) x (x/2) = …

(x + 1)

(x/2)

28

Pelajaran apa yang bisa kita dapatkan?

BISA Karena TERBIASA

29

https://www.alodokter.com/cara-lebih-sehat-
membuat-nasi-goreng

Apa saja bahan-bahan dasar dan bumbu-bumbunya?
Apa saja peralatan yang dibutuhkan?

Membuat Nasi Goreng seperti apa/yang bagaimana?

Bagaimana prosesnya untuk menghasilkan
nasi goreng yang paling enak, dalam waktu
tersingkat, dengan harga terjangkau?

Mencoba yang kedua harus lebih baik dari yang pertama

Saat sudah mulai bisa dan terbiasa tentu kita tak perlu
memperhatikan lagi langkah-langkah detil yang kurang
penting dan mungkin kurang relevan

Bisa diterapkan saat membuat bakmi goreng

Tiba saatnya untuk menuliskan resep membuat nasi
goreng ala”kita” (bahan dań langkah-langkah penting
membuatnya

D

P

A

A

30

Pinjam gitar?

Belajar sendiri
(dari Youtube)

 tanpa gitar

Belajar sendiri
(dari Youtube)
dengan gitar

pinjaman

Cari guru les

Belajar dari teman

Menyediakan
waktu untuk

belajar

Latihan dengan
tekun

Memberanikan
diri main di depan orang

Belajar dari pengalaman ini
(merumuskan langkah-langkahnya)

untuk diterapkan pada hal lain

Memahami bagian-
bagian gitar D

P

A

A

31

D

P

A

A

32

https://www.cnbcindonesia.com/lifestyle/20190721140139-33-86420/sebegini-parah-ternyata-masalah-sampah-plastik-di-indonesia

Sebegini Parah Ternyata Masalah Sampah Plastik di Indonesia

Decomposition Pattern Recognition Abstraction Algorithm

FACILITATIVE TIPS
There are a variety of ways that students can practice and hone their computational thinking, well before they try
computer programming.

Integrate computational thinking into other subjects to make it concrete and relevant for students. Find the ways
your classroom already practices computational thinking and call it out!

You may naturally find opportunities to explicitly highlight CT elements during activities like:
• Multi-part project assignments (decomposition).
• Recurring sequences, like routines within a school day: circle times, food breaks, small group work, individual

reflections (pattern recognition).
• Document analysis to develop a synopsis or summary (abstraction).
• Daily practices, such as classroom procedures to line up or exit the classroom (algorithms).

Focus on one CT element at a time. Finding opportunities to practice each individual element may be easier than
developing activities with a combination of skills.

When possible, long-term projects give learners a chance to use all four computational elements. The order of the
CT elements will vary depending on the project; however, many projects follow a similar process:
• Break the task into smaller pieces (decomposition)
• Recognize prior knowledge that they can apply to the task (pattern recognition)
• Sift through to find the relevant details (abstraction)
• Create a timeline and plan for execution (algorithms)

Bridge the connections to computer science by using a combination of “plugged” and “unplugged” activities. While
computational thinking is necessary for computer programming, applying these elements doesn’t need to happen
on a computer. This varied approach reinforces student confidence with these skills, better preparing them to write
a computer program in the future.

COMPUTATIONAL THINKING

Real-world Examples:

TECH TIP: Computational Thinking

Page 2 of 4

Decomposition Pattern Recognition Abstraction Algorithm

FACILITATIVE TIPS
There are a variety of ways that students can practice and hone their computational thinking, well before they try
computer programming.

Integrate computational thinking into other subjects to make it concrete and relevant for students. Find the ways
your classroom already practices computational thinking and call it out!

You may naturally find opportunities to explicitly highlight CT elements during activities like:
• Multi-part project assignments (decomposition).
• Recurring sequences, like routines within a school day: circle times, food breaks, small group work, individual

reflections (pattern recognition).
• Document analysis to develop a synopsis or summary (abstraction).
• Daily practices, such as classroom procedures to line up or exit the classroom (algorithms).

Focus on one CT element at a time. Finding opportunities to practice each individual element may be easier than
developing activities with a combination of skills.

When possible, long-term projects give learners a chance to use all four computational elements. The order of the
CT elements will vary depending on the project; however, many projects follow a similar process:
• Break the task into smaller pieces (decomposition)
• Recognize prior knowledge that they can apply to the task (pattern recognition)
• Sift through to find the relevant details (abstraction)
• Create a timeline and plan for execution (algorithms)

Bridge the connections to computer science by using a combination of “plugged” and “unplugged” activities. While
computational thinking is necessary for computer programming, applying these elements doesn’t need to happen
on a computer. This varied approach reinforces student confidence with these skills, better preparing them to write
a computer program in the future.

COMPUTATIONAL THINKING

Real-world Examples:

TECH TIP: Computational Thinking

Page 2 of 4

Decomposition Pattern Recognition Abstraction Algorithm

FACILITATIVE TIPS
There are a variety of ways that students can practice and hone their computational thinking, well before they try
computer programming.

Integrate computational thinking into other subjects to make it concrete and relevant for students. Find the ways
your classroom already practices computational thinking and call it out!

You may naturally find opportunities to explicitly highlight CT elements during activities like:
• Multi-part project assignments (decomposition).
• Recurring sequences, like routines within a school day: circle times, food breaks, small group work, individual

reflections (pattern recognition).
• Document analysis to develop a synopsis or summary (abstraction).
• Daily practices, such as classroom procedures to line up or exit the classroom (algorithms).

Focus on one CT element at a time. Finding opportunities to practice each individual element may be easier than
developing activities with a combination of skills.

When possible, long-term projects give learners a chance to use all four computational elements. The order of the
CT elements will vary depending on the project; however, many projects follow a similar process:
• Break the task into smaller pieces (decomposition)
• Recognize prior knowledge that they can apply to the task (pattern recognition)
• Sift through to find the relevant details (abstraction)
• Create a timeline and plan for execution (algorithms)

Bridge the connections to computer science by using a combination of “plugged” and “unplugged” activities. While
computational thinking is necessary for computer programming, applying these elements doesn’t need to happen
on a computer. This varied approach reinforces student confidence with these skills, better preparing them to write
a computer program in the future.

COMPUTATIONAL THINKING

Real-world Examples:

TECH TIP: Computational Thinking

Page 2 of 4

Decomposition Pattern Recognition Abstraction Algorithm

FACILITATIVE TIPS
There are a variety of ways that students can practice and hone their computational thinking, well before they try
computer programming.

Integrate computational thinking into other subjects to make it concrete and relevant for students. Find the ways
your classroom already practices computational thinking and call it out!

You may naturally find opportunities to explicitly highlight CT elements during activities like:
• Multi-part project assignments (decomposition).
• Recurring sequences, like routines within a school day: circle times, food breaks, small group work, individual

reflections (pattern recognition).
• Document analysis to develop a synopsis or summary (abstraction).
• Daily practices, such as classroom procedures to line up or exit the classroom (algorithms).

Focus on one CT element at a time. Finding opportunities to practice each individual element may be easier than
developing activities with a combination of skills.

When possible, long-term projects give learners a chance to use all four computational elements. The order of the
CT elements will vary depending on the project; however, many projects follow a similar process:
• Break the task into smaller pieces (decomposition)
• Recognize prior knowledge that they can apply to the task (pattern recognition)
• Sift through to find the relevant details (abstraction)
• Create a timeline and plan for execution (algorithms)

Bridge the connections to computer science by using a combination of “plugged” and “unplugged” activities. While
computational thinking is necessary for computer programming, applying these elements doesn’t need to happen
on a computer. This varied approach reinforces student confidence with these skills, better preparing them to write
a computer program in the future.

COMPUTATIONAL THINKING

Real-world Examples:

TECH TIP: Computational Thinking

Page 2 of 4

DEKOMPOSISI

PENGENALAN
POLA

ABSTRAKSI

ALGORITMA

1. Kecakapan Personal
• Kecakapan Kesadaran Diri

• Kecakapan Berpikir Rational

2. Kecakapan Sosial
• Kecakapan Berkomunikasi

• Kecakapan Bekerjasama

3. Kecakapan Intelektual (Akademik)

• Kecakapan Berpikir ilmiah

4. Kecakapan Vokasional
• Kecakapan vokasional dasar

• Kecakapan vokasional khusus

Kecakapan Hidup (Life Skills)

33

PEMIKIRAN KOMPUTASIONAL

34

LE
AR

N
IN

G
 T

O
 K

N
O

W

LE
AR

N
IN

G
 T

O
 D

O

LE
AR

N
IN

G
 T

O
 L

IV
E

TO
G

ET
H

ER

LE
AR

N
IN

G
 T

O
 B

E

https://steemit.com/steemiteducation/@mayann/what-are-the-four-pillars-of-learning

Kemendikbud, 2019UNESCO

PEMIKIRAN KOMPUTASIONAL

Masalah
Kehidupan

Nyata

Seringkali
menjadi
sekedar
hafalan

35

